Product Code Database
Example Keywords: playbook -ipad $62
   » » Wiki: Munn Semigroup
Tag Wiki 'Munn Semigroup'.
Tag

Munn semigroup
 (

 C O N T E N T S 
In mathematics, the Munn is the inverse semigroup of isomorphisms between principal ideals of a (a commutative semigroup of idempotents). Munn semigroups are named for the Scottish mathematician Walter Douglas Munn (1929–2008).


Construction's steps
Let E be a semilattice.

1) For all e in E, we define Ee: = { i ∈  E :  i ≤  e} which is a of  E.

2) For all ef in E, we define T e, f as the set of of Ee onto  Ef.

3) The Munn semigroup of the E is defined as: T E := \bigcup_{e,f\in E} {  T e, f : ( ef) ∈ U }.

The semigroup's operation is composition of . In fact, we can observe that T E ⊆  I E where I E is the symmetric inverse semigroup because all isomorphisms are partial one-one maps from subsets of E onto subsets of  E.

The of the Munn semigroup are the identity maps 1 Ee.


Theorem
For every semilattice E, the semilattice of idempotents of T_E is isomorphic to E.


Example
Let E=\{0,1,2,...\}. Then E is a semilattice under the usual ordering of the natural numbers (0 < 1 < 2 < ...). The principal ideals of E are then En=\{0,1,2,...,n\} for all n. So, the principal ideals Em and En are isomorphic if and only if m=n.

Thus T_{n,n} = {1_{En}} where 1_{En} is the identity map from En to itself, and T_{m,n}=\emptyset if m\not=n. The semigroup product of 1_{Em} and 1_{En} is 1_{E\operatorname{min} \{m, n\}}. In this example, T_E = \{1_{E0}, 1_{E1}, 1_{E2}, \ldots \} \cong E.

  • .
  • .

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time